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Abstract—This work builds up on previous research by Sievers
and Helmert, who developed an Monte Carlo Tree Search based
doppelkopf agent. This four player card game features a larger
state space than skat due to the unknown cards of the contestants.
Additionally, players face the unique problem of not knowing
their teammates at the start of the game. Figuring out the player
parties is a key feature of this card game and demands differing
play styles depending on the current knowledge of the game state.

In this work we enhance the Monte Carlo Tree Search agent
created by Sievers and Helmert with a decision heuristic. Our
goal is to improve the quality of playouts, by suggesting high
quality moves and predicting enemy moves based on a neural
network classifier. This classifier is trained on an extensive history
of expert player moves recorded during official doppelkopf
tournaments. Different network architectures are discussed and
evaluated based on their prediction accuracy. The best perform-
ing network was tested in a direct comparison with the previous
Monte Carlo Tree Search agent by Sievers and Helmert. We show
that high quality predictions increase the quality of playouts.
Overall, our simulations show that adding the decision heuristic
increased the strength of play under comparable computational
effort.

I. INTRODUCTION

Card and board games are a suitable testbed for developing
artificial intelligence (AI). They often pose unique problems,
which demand specific adaptations of standard algorithms. Our
work is motivated by recent successes in the games Go [1]
and Poker [2].

The first game, Go, is a 2-player full information game and
consists of an enormous state space (≈ 10172 [3]). Recently,
the program Alpha-Go by Silver et al. [1] reached top-level
play and was able to beat the world champion. One component
of their work was the prediction and suggestion of expert
moves by a neural network. While many other techniques were
involved for improving the play strength of the AI, we will
focus on the next-move prediction.

Our second motivational example, Poker [4], is a game
which combines gambling, strategy, and skill. The probably
most famous variant of poker is Texas Hold’em. Here, each
player is dealt two cards face down. After that, five community
cards are dealt face up in three stages. Before and after each of
the stages the players need to estimate their chances of winning
the current hand. Without information of their opponents hand,
each player needs to place his bet or fold. During the game the
player needs to continuously reevaluate his chances of winning

to either continue the bet or stop his participation in the current
round. Despite possible bluffs, each player interaction results
in additional information, which can be used for reevaluation.
Nonetheless, first algorithms managed to stand against humans
in no-limit poker just recently. Libratus, a poker AI created
by Noam Brown and Tuomas Sandholm [2], improved due to
new techniques for endgame solving in imperfect information
games. Standard techniques for full game analysis involve
Monte Carlo Tree Search (MCTS), which were widely applied
in previous scientific analysis [5]–[8].

In this work we create an AI for doppelkopf, which is a
trick-taking card game for four players. Its popularity is slightly
lower than skat, which is a well-studied card game in the AI
community [9]–[12]. Doppelkopf not only involves analyzing
a larger state space than skat, but includes the unique feature
of unknown player parties, which are determined by the cards
in each players hands. Normally, the two players holding the
queens of clubs play against the remaining two players. As
every player only sees his own cards, the teams are unknown,
until a player plays his queen or reveals his party through
an announcement. Players can make such announcements to
increase their risk and reward for winning the current round.
During the game it is necessary to collaborate with your
teammate, which is why players need to continuously reevaluate
the current game state to infer the parties of each player. The
combination of a large state space and imperfect information
positions our research in line with other popular research topics,
such as Go and Poker.

We directly address the work of Sievers and Helmert [13],
in which they developed an MCTS agent. While their work
already proved to be capable of developing normal level human
play, in this work, we extend the simulation phase of the MCTS
by using a neural network for expert move prediction. Such
a prediction scheme proved to be successful in Go [1]. We
want to test if similar techniques can be successfully applied
to imperfect information games with large state spaces.

In the next section (Section II) we summarize the most
important rules for playing doppelkopf, followed by a review
of the work by Sievers and Helmert in Section III. Therefore,
we shortly discuss the MCTS algorithm as well as its popular
extension upper confidence bounds applied to trees (UCT) first,
and secondly give an overview of the actual implementation in
the context of doppelkopf. The following Section IV highlights



our process for developing a decision heuristic based on neural
networks. Our evaluation in Section V is split into two parts:
we first validate the predictive capabilities of our trained nets in
Section V-A, and second review the influence of the decision
heuristic for simulations in MCTS on the strength of play in
Section V-B. We end our analysis in Section VI by shortly
summarizing the results of our work, as well as suggesting
topics for future analysis.

II. DOPPELKOPF

In this section we give a short overview on the most
important rules for playing doppelkopf. Since there are multiple
playing variants we based our work on the standard tournament
rules published by the Deutscher Doppelkopf Verband (German
Doppelkopf Association, DDV) [14]. This summary only
contains those rules, which are important for the development
of our model.

A set of doppelkopf cards consists of 48 cards. Typically
a shortened french deck is used, including four suits, namely
clubs (♣), spades (♠), hearts (♥), and diamonds (♦). Each
suit consists of 12 cards, precisely two cards per ace (A), ten
(10), king (K), queen (Q), jack (J), and nine (9). Each card
type has an assigned point value. A nine is worth 0 card pips,
jacks are worth 2 card pips, queens 3, kings 4, tens 10, and
aces 11 card pips. Therefore, the total sum of card pips is 240.
Additionally, cards are ordered into trumps and non-trumps.
In a normal game all ♦ cards, all jacks, queens, as well as
both ♥ tens form the trump suit. The remaining cards form the
non-trump suit and are ordered as follows: aces, tens, kings,
nines. Figure 1 shows the order of cards in a normal game.

The game starts by dealing each player 12 cards. Cards
need to be hidden from other players and it is forbidden to
communicate card ownerships. After the dealing phase, the
type of game needs to be settled on. Based on the tournament
rules of the DDV two types of games are distinguished, namely
normal and solo games, each consisting of a re and a kontra
party. In a normal game players holding the ♣ Q form the re
party. In case a player has both ♣ Q, he can either play a solo
or a marriage. In a marriage one of the other three players
joins the re party during the game. Card ownership is usually
not known at the start of the game, but played card can be
used to infer the player parties.

Due to the generally low frequency of solo games, we do
not go into any detail for specific rules. The interested reader
is referred to the full description of tournament rules by the
DDV [14].

Card pips are gained by winning tricks. Each trick is a
playout of one card per player according to the following
rules:

• one player starts by playing a card
• clockwise players need to add a card of the same suit
• in case, they cannot follow the played suit (because they

do not own an appropriate card) they can choose freely
• the player who plays the highest card wins the trick and

starts the next trick

trump suit
♥ 10

♣ J ♠ J ♥ J ♦ J ♦ A ♦ 10 ♦ K ♦ 9

♣ Q ♠ Q ♥ Q ♦ Q

non-trump suit

♣ A ♣ 10 ♣ K ♣ 9 ♠ A ♠ 10 ♠ K ♠ 9

♥ A ♥ K ♥ 9

Fig. 1: Card ranks in normal games.

After 12 tricks the game is finished and every team counts the
card pips of the tricks they won. The re party has to score at
least 121 card pips to win the game. In case the re party does
not succeed, the kontra party wins.

The winning threshold can be shifted by making announce-
ments during the first rounds of a game. Making announcements
increases the value of the game. Each party can announce that
the opponent party will not manage to score 90 (60, 30, 0) card
pips. In case the other party reaches the goal, the announcing
party loses the game. Additionally, players can announce their
party by calling ”re” or ”kontra”.

Winning a game without further announcements is worth
1 point. In case, players announced their party 2 points are
scored. Achieving a score of more or equal than 150 (180,
210, 240) card pips awards one extra point per stage. A correct
announcement that the opponent party will not manage to score
90 (60, 30, 0) card pips is worth extra +1 (+2, +3, +4) points.
Therefore, announcements can hugely increase the value of
a game, while bearing the risk of losing the same amount of
points in case of a wrong announcement. Additional points
are rewarded in case of certain events during the card playing
phase, such as
• winning against the elders: winning against the re party
• catching a fox: winning a trick consisting of a ♦ A played

by the opposing party
• making a doppelkopf: winning a trick including at least

40 card pips
• winning the last trick with a ♣ J
The goal of our AI is to choose the card that maximizes the

chance of winning the game and the value of the win at each
trick. Two features of doppelkopf pose unique demands on
possible solutions. First, doppelkopf features a large state space,
which would be infeasible to be explored at every trick. The
start of the game marks the phase with the highest complexity.
When all players were dealt 12 cards, the number of possible
games can be approximated by Equation 1 [13]:

48∑
i=0

3∏
j=0

(
12

b(i+ j)/4c

)
≈ 2.4 · 1013 (1)

However, this formula disregards that players do not have
full information of their opponents cards. This second feature
further increases the number of possible games. We will further



assume that a player received 12 unique cards. Therefore, the
second player receives 12 out of 36 cards, from the 24 cards
left the third player gets 12 as well and the fourth player
gets the remaining cards. This distribution can be modeled by
binomial coefficients (ignoring double occurences of cards),
which results in a rough upper bound for the number of possible
card distributions:(

36

12

)
·
(
24

12

)
·
(
12

12

)
≈ 3.4 · 1015 (2)

Combining equation (1) and (2), right at the start of the
game the game’s complexity is approximately:

2.4 · 1013 · 3.4 · 1015 = 8.2 · 1028 (3)

This estimate still disregards other game modes, namely
solo and marriages, and does not take player’s announcements
during the game into account. However, it highlights both
components, base complexity and lack of information, which
need to be addressed specifically in the AI agent.

III. MONTE CARLO TREE SEARCH

In this section we will cover the basics of Monte Carlo
Tree Search (MCTS) to review the approach by Sievers and
Helmert. MCTS is a heuristic search algorithm, which lead to
notably successes in the field of computational intelligence in
games [15].

In MCTS the agent explores the game tree by (1) selecting
a node under consideration (2) choosing any legal move for
expanding the search tree (3) performing (random) playouts
for estimating the value of this node and (4) updating the value
estimate of all visited nodes. Node values are determined by
repeatedly simulating games from the selected expansion node
till the end of the game. The outcome of such an episode is
used for backpropagation over all visited nodes. Hereby, for
each node the chances of winning the game by visiting this
node is calculated by dividing the number of winning episodes
by the total number of episodes that visited this node.

A. Upper Confidence Bounds applied to Trees

During the search phase two important concepts need to be
considered, namely exploration and exploitation. Exploratory
moves choose nodes, which were only rarely visited during
previous simulations. In contrast, exploitation chooses nodes
again, which are already known to yield high chances of
winning the game, to further increase the confidence in our
estimate. In MCTS exploration and exploitation need to be
balanced during the search.

The work of Levente Kocsis and Csaba Szepesvri [16]
addressed this problem with their proposal of the upper
confidence bounds applied to trees-method (UCT). Here, the
formula for the upper confidence bounds 1 is used to determine
the expansion candidate. During the second phase of MCTS,
UCT chooses the node, which maximizes the value given by:

R(s′)︸ ︷︷ ︸
Exploitation

+C

√
log(V (s))

V (s′)︸ ︷︷ ︸
Exploration

(4)

where s′ is a child node of s, R(s′) is the average success
after choosing node s′, and V (s) counts the number of visits
of state s during previous episodes. We refrain from using the
convex combination equation of the UCT score for directly
comparable results to the work of Sievers and Helmert.

Parameter C balances between exploration and exploitation
of the game tree. Small values favors the first half of the
equation, such that a high number of wins per move results in
a repeated simulation the same node. Higher values increase the
influence of the exploration term, therefore, leads to simulations
of rarely explored nodes.

B. UCT for Doppelkopf

For doppelkopf the MCTS faces the problem of not knowing
the current state of the game. This includes two sources of
uncertainty, (1) the hidden hand-cards of all other players and
(2) their moves. The first needs to be assumed for a simulated
playout of the game. For this purpose, the implementation
by Sievers and Helmert generates multiple possible card
distributions and repeats the simulation for all of them. This
leads to a better estimate of the current winning chances.

The number of possible card distributions (see Equation 2)
is too large for a complete simulation. Nevertheless, the rules
of the game can limit the number of possible distributions. The
following rules were used for card distribution inference:
• a card that already has been played cannot be assumed

to be on a player’s hand
• in case a player is playing a marriage both ♣ Qs are on

his hand
• in a normal game both players of the re party own one
♣ Q, while the kontra party cannot own this card

• in case a player does not play the current suit of a trick,
he cannot have any other cards of this suit. This also takes
the trump-suit into account.

Only reliable information is used for limiting considered
card distributions. Therefore, at the start of the game cards
are assumed to be distributed at random. After several tricks,
accumulated information is used to infer our opponent’s cards,
such that the final moves only need to consider few remaining
distributions.

IV. NEURAL NETWORK-BASED DECISION HEURISTIC

The current UCT implementation by Sievers and Helmert
tests many card distributions for determining which card
should be played. Using random playouts each of these card
distributions is in need of multiple simulations to achieve a
stable value estimate for each possible card. In our work we
want to decrease the number of simulations per card distribution,
while achieving similar or better play strength. Therefore, we
implement a neural network-based decision heuristic, with the
task to replace random playouts by prioritizing high value
moves. Figure 2 shows how our approach is integrated in
the previous implementation by Sievers and Helmert. In the
following subsections we explain the details of our neural
network design.



Fig. 2: Combination of a neural network-based decision
heuristic and a MCTS agent for doppelkopf

A. Doppelkopf Data Set

The task of the neural network is to predict high value
moves for the current game state. For our study we use
34 911 tournament game records downloaded from a German
doppelkopf online platform [17] to train the network. Each
game consists of 12 tricks, which can be played from four
positions. This yields a total of 1 675 728 game states to be
evaluated.

Table I summarizes the number of games per game mode. In
general a neural network classifier needs a reasonable amount of
data to learn useful patterns. Due to the low frequency of solos
in our dataset we excluded solo games from our evaluation.
The remainder (31 448 games, 1 509 504 game states) was
split into three parts. We used 60% of the games (905 702
game states) to train the model, 20% (301 901 game states) for
validation and another 20% (301 901 game states) for testing.
The implementation was performed using the Keras framework
[18] with the Tensorflow [19] backend. Results and source
code are available on our website [20].

TABLE I: Distribution of games per mode in the provided
game record data set.

Game Mode Total Games Share

normal game 24 548 ≈ 70.32%

announced marriage 6900 ≈ 19.76%

jack solo 1263 ≈ 3.62%

queen solo 763 ≈ 2.19%

ace solo 1086 ≈ 3.11%

♦ solo 88 ≈ 0.25%

♣ solo 85 ≈ 0.24%

♠ solo 85 ≈ 0.24%

unannounced marriage 51 ≈ 0.15%

♥ solo 43 ≈ 0.12%

B. Coding the current state of the game

Since our network predicts the next move, we first need a
suitable coding of the current game state to serve as input for
our neural network models.

The following information needs to be represented:
a) the currently played game mode
b) the current position in the trick
c) cards played during the current trick
d) history of previous tricks
e) *cards per player
f) *the party the player belongs to
g) *the parties of other players

Entries marked with an asterisk are bound by available infor-
mation of the current game situation. Since the MCTS evaluates
multiple card distributions, we create full information games
and code the current card distribution under consideration.
Generally, we use a binary vector as input. Each element is one-
hot-encoded [21], meaning each possible value is represented
by its own binary variable. This ensures an equal weighting
between included information parts.

a) game mode (10 dimensions) For the purpose of coding
the current game mode, we need ten dimensions, of which
each represents one of the following modes: normal game,
announced marriage, unannounced marriage, queen solo, jack
solo, ace solo, ♦ solo, ♥ solo, ♠ solo, and ♣ solo. We currently
do not include other than normal games and announced
marriages. Nevertheless, the coding should be insusceptible to
changes in the utilized training data.

b) current position (4 dimensions) Four neurons represent
the player’s position in the current trick.

c-e) card related information (384 dimensions, 48 cards*8
possibilities) Most of the neurons are needed to encode the
current position of each of the 48 cards. For each card
eight possible positions are considered: (1-4) hand of player
one/two/three/four, (5-7) first/second/third card played in the
current trick, or (8) played during an earlier trick. Each is
represented by one dimension per card. Because the doppelkopf



deck consists of two cards of every kind, the first instance is
always represented by the earliest occurrence of a card. For
48 cards we need a total of 384 input dimensions.

f-g) player parties (8 dimensions) Two dimensions per player
are used to encode the player’s party. Exactly one of these two
dimensions per player is active. Note that even if the player
is usually not aware of each player’s party membership, we
assume complete information during the simulation phase of
the MCTS.

C. Design of the Neural Network

In this section we further specify our neural network model
by describing the model of our hidden layers, as well as
our configuration of training parameters. Concatenating the
dimensions from above leads to a total number of 406 input
dimensions. Generated neural networks will have 24 output
neurons, one for each card type in the doppelkopf deck.

A feedforward neural network, also called a multilayer
perceptron, is a classifier, which defines a mapping of input
x to a category y (here: x = game state, y = card to be
played). Its basic components are neurons, which are ordered
in multiple layers. Each neuron consists of a net-input function,
an activation function, and an output function. Information
flows forward through the net, such that the output of a layer
is fed as an input to the next layer. The number of layers is
called the depth of a network, while the number of neurons
per layer is called the width.

Supervised learning can be used to adjust the parameters of
a neural network. Weights can be adapted with the backpropa-
gation algorithm and its optimized adaptation AdaDelta, using
the current error-rate of the network. A detailed description of
neural network basics can be found in the book ”Computational
Intelligence” by Kruse et al. [22].

In the following sections we describe a network by the
number of neurons per layer. Input and output layers will stay
consistent in all tested network structures, since they are bound
by the classification task. In our experiments we iteratively
adjusted the number of hidden layers and the neurons they
contain to optimize for the prediction accuracy of the network.
Additionally, we used dropout layers [23]. For each neuron
with a certain probability, called dropout rate, those layers
deactivate this neuron during the training phase. Therefore,
neurons hold partially redundant information, which increases
generalization and decreases the chance of overfitting for the
whole network. The final network structure is coded by the
number of neurons per layer and the dropout rate of interlaced
dropout layers. For example the network architecture name
”406-100-0.2-24” describes a network of 406 input neurons,
one hidden layer consisting of 100 neurons, a dropout layer
with a dropout rate of 0.2, and an output layer of 24 neurons.

V. EVALUATION AND DISCUSSION

Two evaluation phases were added for ensuring the validity
of our results. First, we compare different network structures
depending on their prediction accuracy. In our second evalu-
ation we use the best neural network for enhancing MCTS

simulations. The following subsections explain the details of
both evaluations.

A. Next Card Prediction Evaluation

First tests on the prediction of expert moves were performed
in the masterthesis of Matthias Hewelt [24]. Simple densely
connected neural networks were used for the prediction of
expert moves. Based on a rule of thumb by Heaton, the number
of hidden neurons in a densely connected network should by
between the number of inputs and the number of outputs [25].
Therefore, each hidden layer consisted of 215 neurons. The
network was trained using batches of 1000 cards and stochastic
gradient descent as optimization function.

Table II shows accuracy rates averaged over ten training
repetitions. In the context of the given prediction task we
distinguish Context Free (CF) and Context Sensitive (CS)
evaluations. The Context Free evaluation directly compares
the highest ranked card predicted by the neural network with
the true card in the test sample. However, this disregards the
fact that this card may not be playable. Therefore, we add
the context bound evaluation, in which only the highest rated
card, which also needs to be playable, is compared to the
true outcome. Classification accuracies on each position were
between approximately 40− 50%.

Since we were not satisfied by those prediction rates we
continued this analysis and tested other training parameters as
well as multiple network structures. Highest accuracy gains
were achieved by the cross-entropy loss function [21] and the
AdaDelta Optimizer [26]. Furthermore, rectified linear units
were used during our following experiments [27]. Thus, we
reduced the vanishing/exploding gradient problem and were
able to test bigger network sizes.

The results of this second phase are recorded in Table III.
Here, we tested the influence of an interlaced dropout layer,
by adjusting the dropout rate. We can see, that our second
generation of networks achieved much higher accuracy rates of
about 70%. Those networks were trained on the whole dataset.

Based on the previous results we used a fixed dropout rate of
0.2 in the remainder of our experiments. The last evaluation of
our network architecture compares prediction rates of networks
with different number of layers and nodes per layer. Results
can be seen in Table IV.

After our first evaluation series, the best performing network
was NN2. We tried to push the limits even further by optimizing
the size of each layer and including batch normalization layers.
The final result is network NN7, which outperformed all
other networks during the training phase. It consists of two
hidden layers with 700 and 406 neurons, an interlaced dropout
layer, and two batch normalization layers [28]. The results
of our other networks suggest, that increasing the number of
layers may result in even better accuracies. As an example our
largest network, which included seven hidden layers, performed
equally well on most positions, and outperformed the two layer
network on the next card prediction for the fourth position.
While adding more layers may increase the prediction accuracy,
it also increases the required time for a prediction. The networks



TABLE II: Comparison of classification rates. For each position we trained and tested each network structure. Further, a separate
network was trained on the whole data set. 1 hidden layer: 406-215-24, 2 hidden layers: 406-215-215-24, 3 hidden layers,
4 hidden layer: 406-215-215-215-215-24, 5 hidden layers: 406-215-215-215-215-215-24

Network Architecture All Positions Position 1 Position 2 Position 3 Position 4
CF CS CF CS CF CS CF CS CF CS

1 hidden layer 0.3294 0.4157 0.3537 0.4986 0.3865 0.4778 0.3273 0.4364 0.3501 0.4908
2 hidden layers 0.4066 0.4767 0.3498 0.4696 0.2440 0.3667 0.2680 0.4167 0.2855 0.4469
3 hidden layers 0.4044 0.4701 0.2686 0.4160 0.2185 0.3974 0.2377 0.4026 0.2346 0.4063
4 hidden layers 0.3479 0.4252 — — — — — — — —
5 hidden layers 0.2969 0.3994 — — — — — — — —

TABLE III: Comparison of dropout rates 0, 0.2, and 0.5 by mean accuracy and standard deviation of 10 training evaluations.
The model was trained on all positions. We trained the models on different network structures with different number of hidden
layers. 1 hidden layer: 406-100-24, 2 hidden layers: 406-812-406-24, 6 hidden layers: 406-1624-812-406-203-100-50 24,
7 hidden layers: 406-3248-1624-812-406-203 100-50-24

Network Architecture dropout rate = 0 dropout rate = 0.2 dropout rate = 0.5

CF CS CF CS CF CS

1 hidden layer 0.5997± 0.0148 0.6284± 0.0095 0.6135± 0.0022 0.6409± 0.0028 0.4965± 0.0044 0.5597± 0.0023

2 hidden layers 0.7159± 0.0036 0.7175± 0.0035 0.7293± 0.0030 0.7296± 0.0030 0.7194± 0.0023 0.7196± 0.0023

6 hidden layers 0.7136± 0.0004 0.7153± 0.0038 0.7186± 0.0129 0.7206± 0.0113 0.7069± 0.0095 0.7080± 0.0083

7 hidden layers 0.7125± 0.0026 0.7146± 0.0026 0.7240± 0.0139 0.7261± 0.0130 0.7176± 0.0027 0.7188± 0.0025

TABLE IV: Comparison of classification rates. Each model was separately trained and evaluated on the whole training data set
and on the subset of each single position.

ID Network Architecture All Positions Position 1 Position 2 Position 3 Position 4
CF CS CF CS CF CS CF CS CF CS

NN1 406-100-0.2-24 0.6135 0.6410 0.5703 0.5751 0.6238 0.6526 0.6405 0.6721 0.6806 0.7145
NN2 406-812-0.2-406-24 0.6675 0.7293 0.6014 0.6022 0.7042 0.7072 0.7215 0.7256 0.7657 0.7698
NN3 406-3248-0.2-406-24 0.6896 0.6952 0.5913 0.5934 0.6803 0.6893 0.6991 0.7098 0.7450 0.7562
NN4 406-6496-0.2-406-24 0.6910 0.6954 0.5917 0.5939 0.6838 0.6921 0.6964 0.7072 0.7439 0.7554
NN5 406-1624-0.2-812-406-203-100-50-24 0.7186 0.7206 0.5945 0.5975 0.6919 0.7005 0.7082 0.7174 0.7577 0.7667
NN6 406-3248-0.2-1624-812-406-203-100-50-24 0.7240 0.7261 0.5900 0.5943 0.6928 0.7034 0.7091 0.7192 0.7601 0.7710
NN7 406-700-0.2-bn-406-bn-24 0.7376 0.7378 0.6044 0.6050 0.7236 0.7250 0.7393 0.7411 0.7869 0.7887

(a) neural network guided MCTS vs. Random AI (b) neural network guided MCTS vs. MCST only using UCT

Fig. 3: Comparing the strength of play of different doppelkopf agents. Games included two players per agent type and were
repeated on all six possible agent positionings. Each value represents the average points per round per agent type.



NN1, NN3, and NN7 were used during game simulation in our
final experiments, in which we test our network in simulated
games against other doppelkopf agents. This was done to
evaluate a diverse set of networks, while adjusting the number
of layers and neurons per layer. Networks NN4 to NN6 took
too long for computation of the results and will be included
in our extended results on our website [20].

B. Evaluating Player Performance

In our second evaluation series we compared the strength
of play of our neural network enhanced MCTS agent with a
random AI and the provided UCT implementation by Sievers
and Helmert [13]. In order to eliminate the possibility of one
player receiving better cards by chance, we repeatedly tested
each card distribution on all six possible agent positionings.
By averaging a players total points per round, we can assure a
test under fair conditions. Since two players of the same type
are undistinguishable, we took the sum of points per agent
type.

Figure 3a shows the result of NN2 playing against two
random players. Those lost nearly every game and did not
stand a chance versus our developed agent. A more inter-
esting comparison is shown in Figure 3b. Here, we see the
performance of our neural network-based MCTS agent using
networks of differing size and structure playing versus Sievers’
and Helmert’s UCT agent. Networks NN1 and NN3 were
able to consistently beat their UCT agent. Despite dominating
results in the card prediction task, NN7 was not able to beat
the other’s networks results during simulated play. We assume
this is caused by overfitting during the training process on the
used data set.

We also evaluated the run-time of our simulation. Average
simulation times for networks NN1, NN3, and NN7 are 53s,
296s, and 161s per game. Therefore, an increased number of
layers and hidden neurons per layer cause higher computation
times.

VI. CONCLUSIONS

In this work we discussed the card game doppelkopf
and its unique demands on the application of computational
intelligence methods. These include the players uncertainty of
the opponents cards as well as unknown player parties at the
beginning of a game, which leads to an overall larger state space
than comparable games like skat. Our work was motivated by
reducing the state space under consideration during the MCTS
by only simulating high value moves.

Based on a MCTS agent by Sievers and Helmert we
introduced a neural network based decision heuristic for rollout
simulations. The network was trained on a large database of
tournament records to effectively predict expert moves. While
the UCT algorithm is used to decide which nodes to expand
during the MCTS, the neural network predicts probable player
moves depending on the current state of the game. Thus, we
were able to increase the quality of performed simulations
leading to a higher strength of play.

During our work we trained different network architectures
and analyzed their prediction accuracies. Only few layers
were necessary to predict expert moves reasonably well. Small
dropout rates further increased the prediction accuracy to 73%.
The best net consisted of two hidden layers and one interjacent
dropout layer, with a dropout rate of 0.2. For this purpose,
we directly compared our decision heuristic enhanced agent
with the previous implementation by Sievers and Helmert [13]
by simulating 400 games. We ruled out positioning bias by
repeating our simulation with the same card distributions dealt
to every possible positioning of two agents each. Our evaluation
demonstrates that our decision heuristic leads to an increased
strength of play. Details on our results as well as our source
code are available at [20].

In the future we plan to explore the applicability of other
network architectures to further improve the prediction accuracy.
In our current encoding time dependent models like simple
recurrent neural networks [29] as well as long short-term
memory networks [30] are not applicable. A time dependent
encoding would only contain a history of all previous moves
and the set of cards on the player’s hand. However, those
might need a larger database of game records to cover the
time dependency of the players’ moves. Additionally, using
reinforcement learning to iteratively train two competing neural
network based players may further improve the prediction
accuracy.
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